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ABSTRACT

Marvin Marcus: PROBLEMS IN DETERMINING REGIONS IN THE COMPLEX

PLANE CONTAINING EIGENVALUES OF A LINEAR OPERATOR:

VARIATIONS ON THE HAUSDOFF-TOEPLITZ NUMERICAL RANGE.

Research either appeared or in press during the period Oct. 1, 1979 -

Sept. 30, 1980 covered the following topics: (1) values assumed by a

product of quadratic forms; (2) inequalities relating eigenvalues and non-

principal subdeterminants of an arbitrary complex matrix; (3) lower bounds

for the spread and Hilbert norm of an arbitrary complex matrix; (4)

numerical computations relating eigenvalues and non-principal subdeterminants;

(5) a simplification of the Goldberg-Straus proof of norm properties of

C-numerical radii; (6) definition and analysis of a new class of general-

ized operator norms containing the classical work of Fan, Weyl, von

Neumann and others; (7) the analysis of certain linear groups defined by

tensor identities; (8) an extension of the Cauchy-Schwarz inequality.

61
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The purpose of this interim report is to summarize the status of the

work of H. Marcus, sponsored by the Air Force office of Scienti fic Research,

covering the general topic of eigenvalue analysis of matrices and compact

operators. The presentation is in reverse chronological order beginning

with a description of research recently completed and currently underway.

1. The numerical range. The classical Hausdorff-Toeplitz numerical

range [l, 2] of an operator A is the set of complex numbers W(A) =

[(Ax, x)lIxII = 1). The important facts about W(A) from the standpoint

of eigenvalue localization are: if A is normal then W(A) is the convex

polygon spanned by the eigenvalues of A; W(A) is convex for any A;

W(A) contains the eigenvalues of A for any A; any non-differentiable

point (i.e., cusp point) on the boundary curve of W(A) is an eigenvalue

of A. Included with this report are several transparencies of numerical

ranges (and higher ranges) that were computed using FORTRAN routines

developed at UCSB and run on the AS/6.

In [3) and [4, 5, 6) von Neumann and later Fan introduced what

Halmos [7] subsequently called the higher numerical range : Wk(A) = 2z
k

)(Axj, xj), x1,..., xk o.n.). That is, Wk(A) is the set of sums of value3 of

J=l

quadratic forms over a fixed number, k, of varying orthonormal vectors

(i. e., mutually perpendicular unit vectors). Wk(A) shares certain proper-

ties in common with W(A): Wk (A) contains all sums of k eigenvalues of

A; Wk(A) is convex; any non-differentiable point (i.e., cusp point)

on the boundary curve of Wk(A) is a sum of k eigenvalues of A. (Some

of these facts were discovered at UCSB in work sponsored by AFSC). Many

mathematicians have contributed to research stemming from the original papers

_ . . .,, .a-4
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of von Neumann and Fan: Au-Yueng, Bauer, Bellman, Davis, De Pillis, Deprima,

Deutsch, Djokovic, Donoghue, Farnell, Fillmore, Givens, Goldberg, Halmos,

Henrici, Horn, Johnson, Kato, Magnus, Mirsky, Olkin, Parker, Pearcy, Putman,

Schneider, Givens, Goldberg, Stampfli, Straus, Taussky-Todd, Thompson,

Westwick, Wielandt, Williams, Zenger.

Research currently underway by M. Marcus is related to the recent work of

Goldberg and Straus on numerical radii. As Goldberg points out in his report,

this concept is a valuable tool in stability analysis of finite difference

approximations for hyperbolic systems of ?.D.E. The numerical radius of

A denoted by r(A), is simply the distance of the farthest point in W(A)

from the origin. In a seminar in the early summer of 1980 involving three of

the P.I.'s on this grant, Marcus introduced the following definition: let

C = [GI: G2 : G3] be a k x 3k matrix in which G1 and G2 are positive

definite. Twosets of vectors x1 ,..., xk, and y1 ...I Yk are G -vectors

if [(xi,x)] G1, (yi = G2, [(xiY.)] = G3 .' The C -numerical
k

range, denoted by W G (A), is defined as the totality of numbers I(AxiYi
i=l

in which the xi and yi vary over all sets of G -vectors. Of course, if

Gc = 2 =G = 1k  then W0 (A) specializes to the higher numerical range;

if GI 
= G = 11 G3 = 0 then W(A) has been used by Mirsky to study the

spread of A (i.e., the maximum distance between two eigenvalues of A). A

great many obviously important questions immediately arise about W G(A):

when is W G(A) non-empty, i. e., when do there exist sets of G -vectors ?

when is W G(A) convex? ; how does the choice of G effect various functions

of the eigenvalues of A that lie in W G(A)?; can an effective computer

routine be developed for plotting W (A)?; can simple functions of the eigen-
vG
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chaices of G ?; if the G - numerical radius, rG(A), is defined as the

distance of the farthest point in W (A) to the origin then is rG A)
G

a matrix norm ?. In the first two of a series of papers currently being

prepared M. Marcus and M. Sandy (a Phd student) we have completely

answered the first two and the last of these questions. Some of these

results will be presented at the Annual Meeting of the American Mathema-

tical Society, Jan. 7 - 11, 1981.

The proof that r G(A) is a norm is related to the Goldberg-Straus workCI
on C - numerical radii, and, in fact, substantial simplifications in the

proof of their principal result have just recently been obtained [8].

In [9] Marcus solved a research problem posed by A. Abian in the

Notices of the American Mathematical Society: what are the conditions

on PI'2' Pl" 2 that

(P1U, u)(P v, v) (Qlu, v)(Q 2v, v)

for all vectors u and v. This inequality has just recently been

reconsidered under the present grant as a special case of operators
th

on the m- tensor space of the form

L = P '"P - Q 1 " ® Qm

in which C is a permutation operator corresponding to a permutation in

S with no fixed points (the case m = 2 is the Abian problem)
m

The problem is to determine conditions on P' "'Y P ' .. I Q

for L to be decomposably non-negative, i.e., for (LuI 0 .®urn

V 1 ® ... @v ) 0 to be satisfied for all vectors ul, ... , u
in

v, ...Y v . This problem is now completly solved and currently being

prepared for publication [10]. Along these lines 14. Marcus and Bo-Ying

Wang introduced the set W (L), where L is a linear operator on the
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k
tensor space ® V, and the indicated set consists of all complex numbers of the

I

form IL x I ®..®Xk, xI  ... ® X), in which xl, ... xk are o.n.

vectors. This formulation includes all known versions and extensions of

the classical Hausdorff-Toeplitz numerical range. Some of the results

obtained recently are: W I (L) in the origin iff L = 0; if dim V > 2

then W (A ® B) C R iff A ® B is hermitian; if L = Al 0 ... 9 Ak,

then W (L) is a single non-zero point iff L is a non-zero multiple of

the identity. All of these results are parts of a larger plan to study the

structure of the set

W G(L) = ((L xy) X 1  xk Y = Yl ® Yk

and the xi and yi are G-vectors as defined above)

G

The set W (L), the G -decompable numerical range, appears to us to be

the proper setting in which to incorporate most of the results on variations

of the numerical range, relations between eigenvalues and quadratic forms

etc. that have appeared in the 167 papers published on this subject

beginning with the pioneering work of Hausdorff, Toeplitz, von Neumann and

Fan.
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ATTACHMENT TO MARCUS REPORT

In transparency I the ordinary numerical range

WI (A) ( (Ax,x) I i x II = 1)

of the indicated 4 X 4 matrix is exhibited. In transparency II the

plot shows that the ordinary numerical range W1 (A) coincides with

the convex polygon PI(A) spanned by the eigenvalues. However,

the 2nd numerical range,

W 2 (A) = ((Axl,x 1 ) + (Ax 2 ,x 2 ) xlPX2 orthonormal)

strictly contains the convex polygon P2 (A) spanned by all sums

Xi. + X. i < j , of the eigenvalues of A, the indicated 5 X 5 matrix.

In transparency III both WI(A) = P1 (A) and W2 (A) = P2 (A) for the

indicated 7 x 7 matrix A. However the 3rd numerical range,

W3(A) = ((Ax 1,x) + (Ax2 ,x2) + (Ax3 ,x3 ) 1 XlX 2 ,X 3 )

strictly contains the convex polygon P 3(A) spanned by all sums

% + % +% k < j < k, of the eigenvalues of A.
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ABSTRACT

M. Goldberg: PROBLEMS IN STABILITY ANALYSIS OF FINITE

DIFFERENCE SCHEMES FOR HYPERBOLIC 3YSTEMS

Research completed includes the following: (1) Convenient

stability criteria for difference approximations to hyperbolic initial-

boundary value problems have been obtained. The new criteria are given

in terms of the boundary conditions and are independent of the basic

scheme. (2) The known stability condition for the multi-dimensional

Lax-Wendroff scheme has been improved. (3) Norm properties of

C-numerical radii were studied. In particular, multiplicativity

factors were obtained for the case where C is a normal matrix.
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M. Goldberg: PROBLEM IN STABILITY ANALYSIS OF FINITE DIFFERINCE

SCHEMES FOR HYPERBOLIC SYSTEMS.

The purpose of this interim report is to summarize my Air Force

sponsored research in stability analysis of finite difference approxi-

mations of hyperbolic partial differential systems and related topics,

during the period October 197(9 - September 1980.

1. Convenient Stability Criteria for Hyperbolic Initial-

Boundary Value Problems.

In the past year E. Tadmor and I, ((], have succeeded in extend-

ing the results of [5] to obtain easily checkable stability criteria

for difference approximations of initial-boundary value problems

associated with the linear hyperbolic differential systems

6u(x,t)/ t = Au(x,t)/ax + 13u(x,t) + r(x,t), x > 0, t > 0

where u(x,t) is the unknown vector, A a Hermitian matrix, B an

arbitrary matrix and f(x,t) a given vcctor. The difference approx"-

mations consist of arbitrary basic schemes -- explicit or implicit,

dissipative or unitary, two-level or multi-level -- .4nd boundary

conditions of a rather general type.

In the first step of our stability analysis we prove that the

approximation is stable if and only if the scalar outflow components

of its principal part are stable. This reduces the global stability

question to that of a scalar, homogeneous, outflow problem.

Investigating the stability of the reduced problem, our main

results are restricted to the case where the boundary conditions

b
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are translatory, i.e., determined at all boundary points by the

same coefficients. Such boundary conditions are commonly used

in practice; and in particular, when the numerical boundary consits

of a single point the boundary conditions are translatory by defini-

tion.

The main stability criteria for th translatory case are given

essentially in terms of the boundary conditions. Such scheme-

independent criteria eliminate the need to analyze the intricate and

often ccmplicated interaction between the basic scheme and the

boundary conditions; hence providing convenient alternatives to the

well kmown stability criterion of Gustafsson, Kreiss and Sundstrbm,

181.

We assume that the basic scheme is stable for the pure Cauchy

problem and that the approximation is solvable. Under these basic

assumptions -- which are obviously necessary for stability -- we

obtain, for example, that the reduced problem is stable if the

(trana-latory) boundary conditions are solvable and staisfy the von

Neumann condition as well as an additional simple inequality. If

the basic scheme is unitary it is also required that the boundary

conditions be dissipative.

Having the new stability criteria, we studied several examples.

First, we reestablish the known fact that if the basic scheme is two-

level and dissipative, then outflow boundary conditions determined by

horizontal extrapolation always maintain stability. Surprisingly, we

show that this result is false if the basic scheme is of more than

two levels. Next, for arbitrary multi-level dissipative basic schemes
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we find that if the outflow boundary conditions are generated, for

example,by oblique extrapolation, by the Box-Scheme, or by the

right-sided Euler scheme, then overall stability is assured. Finally,

for general basic schemes (dissipative or unitary) we show that overall

stability holds if the outflow boundary conditions are determined by the

right-sided explicit or implicit Euler schemes. These examples incor-

porate many special cases discussed in recent literature [1, 5, 8, 9,

10, 11, 13, 14].

It should be pointed out that there is no difficulty in extend-

ing our stability criteria to cases with two boundaries. In fact, if

the corresponding left and right quarter-plane problems are stable,

it is known [83 that the original two-boundary problem is stable as

well.

At present, Tadmor and I are studying further stability criteria

which result from the one obtained recently. We also intend to inves-

tigate malposed boundary canditions for hyperbolic inflow problems.

We expect to complete this work by the summer of 1981.

2. Numerical Radii and Matrix Norms.

(i) The importance of the numerical radius as a tool in stability

analysis of finite difference approximations for multi-dimensional hyper-

bolic systems with constant coefficients is well known. In a forthcoming

work with E. Tadmor, ['7], we use this tool to improve the known stability

condition for the Lax-Wendroff scheme in dimension d > 2. We show that

if the differential system is

d

___ A j ,

J--i
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A being fixed coefficient matrices, then the corresponding Lax-Wendroff

scheme is stable if and only if

2 -12

d --1 (xj)

where p(A3) denotes the spectral radius of A. This is a considerable

improvement of the original Lax-Wendroff criteria [12],

At <
d3/2 6xj

(ii) In two recent papers [2,3], E.G. Straus and I have studied

norm properties of C-numerical radii which constitute the following

generalization of the classical radius: Given n x n matrices A, C,

the C-numerical radius of A is the non-negative quantity

rc(A) = max(Itr(CU*AU)I :U unitaryl

Evidently r C is a semi-norm on the algebra of n x n matrices, and

for C = diag(1,0,...,O) it reduces to the classical radius r(A).

We prove that rC is a generalized matrix norm if and only if

C is not scalar and tr C 0. This provides a large family of new

norms which might prove useful in application. Also, the result

agrees with the well known fact that the classical radius is a

generalized matrix norm.

A significant disadvantage of the classical radius is that it

is not multiplicative, i.e., it is not an ordinary matrix norm. This

led us to consider arbitrary generliazed matrix norms N and charac-

terize all positive constants v for which vN is multiplicative.
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we call such v "multiplicativity factors" for N. Applying our

results to rc(A) we found multiplicativity factors in the case

where C is Hermitian. In particular, we showed that vr is

multiplicative if and only if v > 4, independently of the dim-

ension of the space.

Currently, Straus and I [41 are examining multiplicativity

factors for arbitrary C-radii. Related topics are under continuing

study as well.
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ABSTRACT

M. Newman: THE APPLICATIONS OF NIMBER THEORY TO COMPUTATION

Research completed in the last period includes the following:

(i) The production of an ILLIAC IV program to determine the rank and

a maximal nonvanishing subdeterminant of an integral m X n matrix.

(2) The production of an ILLIAC IV program to determine the null

space of an integral to X n matrix. (3) The production of an ILLIAC

IV program to determine all the rational solutions of an arbitrary

integral linear system of equations.
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M. NEWMAN: The applications of number theory to computation.

The purpose of this report is to summarize my AIR FORCE sponsored

research on the application of number theory (in particular modular arithme-

tic) to problems of computation, using the parallel processing features of

ILLIAC IV.

The principal objective of my research is to apply number-theoretic

ideas to problems of numerical analysis and computation. In particular,

applications of modular arithmetic are being made to the following topics:

(1) The exact solution of an integral system of linear equations,and

the exact computation of the determinant of the system;

(2) The determination of the exact inverse of an integral matrix

using minimal storage;

(3) The determination of the rank and a basis for the null space

of an inegral matrix;

(4) The determination of all rational solutions of an integral

system of linear equations;

(5) The determination of the eigenvalues of a rational symmetric

triple diagonal matrix to any desired accuracy;

(6) The computation of the permanent of a matrix.

Programs to perform (1), (2), (3), and (4) which take full

advantage of parallel computation have been prepared for ILLIAC IV.

ILLIAC IV programs for (5) and (6) are in process of preparation.

The primary objective of the research undertaken in the last

period was to produce ILLIAC IV programs to determine the rank and a

maximal nonvanishing subdeterminant of an integral m x n matrix.

This program was then used as part of another program which determines a
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basis for the null space of an integral m x n matrix. Finally, these

programs were used to prepare a master program which finds all the rational

solutions of an arbitrary integral linear system of equations. All of these

programs are available as ILLIAC IV programs, and are quite efficient. For

example, any system of m equations is n unknowns with m - 40, n ! 40,

can be processed in at most 30 seconds. The comparable time for a serial

machine would be inordinately large; perhaps 3 hours.

I have had invaluable help from the staff of the Institute for Advanced

Computation at Sunnyvale, and also from Paol Nikolai, at Wright-Patterson

Air Force Base in Dayton, Ohio.

My research assistent John Shure has written a Master's Thesis on this

topic (copy enclosed). A detailed account of this project will appear in Math

Comp. at some future time.
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M. Newman: PUBLICATIONS

October 1, 1979, to date

i. Eqivalence without determiantal divisors, Linear and Multilinear
AlgebLa 7, 107-109 (article), (1979).

2. The use of integral operators in number theory (with C. Ryavec and
B. N. Shure)) J. Functional Analysis 32, 123-130 (article), (1979).

3. A note on conspectral graphs (with C. R. Johnson J. Comb. Theory,
B28, 96-103, (1980).

4. On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24,
156- 158, (1980).

5. Positive definite matrices and Catalan Numbers (with F. T. Leighton),
Proc. Amer. Math. Soc. 79, 177-181, (1980).

6. Matrices of finite period and some special linear equations, Linear
and Multilinear Algebra, 81 189-195, (1980).

7. Gersgorin revisited. Linear Algebra and its Applications 30, 247-249,
(1980).

8. A surprising determinantal inequality for real matrices (with C. R.
Johnson), Math. Ann. 247, 179-180, (1980).

9. A radical Diophantine equation, to appear in J. Number Theory.

10. Determinants of Abelian group matrices (with M. Mahoney), to appear
in Linear and Multilinear Algebra.

i. Determinants ofecirculants of prime power order, to appear in Linear
and Multilinear Algebra.

I.
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ABSTRACT

R.C. Thompson: SINGULAR VALUES

Singular values and invariant factors have continued to be inves-

tigated. Applications to the matrix valued triangle inequality are

studied as well as to products of matrix exponentials.



22

The singular values of a matrix A are the eigenvalues of (AA*)4

where A* is the complex conjugate transpose of A. These elusive non-

negative numbers are among the most important and useful quantities

that may be computed for a matrix. For example, they are intimately

connected with the popular "generalized inverse", they have many appli-

cations in numerical linear algebra, and their properties are best

comprehended in Lie-group and Lie-algebra theoretic terms. A discovery

of Thompson a few years ago is that number theory, particularly the

study of the invariant factors of matrices with integer entries, affords

an excellent guide to the properties of singular values. Moreover,

since the number theoretic investigations are usually easier than the

corresponding singular value analysis, it is sound practice to precede

each investigation of singular values with a number theoretical study.

A large part of the effort in the past year has been expended in this

manner, preparing the way for a major understanding in the study of

singular values by doing certain of the (easier but still very difficult)

number theoretical studies of invariant factors.

Thompson has conjectured that, if A and B are matrices with real

or complex entries, then

A B SAS -I + TBT()

for appropriate matrices S and T (dependent on A and B). This conjecture

is proposed only for A and B sufficiently near zero, since Thompson has

demonstrated its falseness for matrices A ,B with large entries. It has

also been shown by Thompson, using the Campbell-Baker-Hausdorff formula,

that this conjecture is formally correct, in that infinite series exist
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giving S and T which work in (I). The only difficulty is that the series

cannot be proved to converge, and Thompson believes that they do not

converge. Thus an alternative strategy is needed to prove (I), and the

first phase of this strategy is under way. The strategy is to

analyze how the similarity invariant factors behave when complex

matrices add or multiply, then use the results of this analysis to

prove (I). The first, nearly completed, phase is the same question for

the invariant factors of matrices with integer (rather than complex)

entries. Striking results have been obtained, a general conjecture

formulated, and proved in many cases. The results of this initial phase

will be incorporated in paper 15.

The application to singular values will come when the same

conjecture (1) is studied for Hermitian matrices A and B. (Thompson

mentioned this conjecture at the 1980 Auburn (Ala.) matrix conference.

The superb mathematician, Friedland, was present at this conference and

voiced his opinion that the conjecture was extremely difficult. Others

gave the same opinion).

All this work is incorporated in papers 3, 4, 6, 13, 14, 15. It is

worth noting that Thompson's efforts on this conjecture have, as a by-

product, uncovered some new results pertaining to the Campbell-Baker-

Hausdorff formula that is so important in Lie theory.

In another direction, classical stability theory relies, in part, on

the study of greatest common right divisors and least common left

multiples of polynomial matrices. A number of new results pertaining

to these questions were found in paper 12.

A result of Thompson a few years ago is the matrix valued triangle

I[I I . ... ! . .. .. . .. ... . .... ... ii" 
2 - -

' . . .. . ... . . .. .. ..... .. ':' --- ' - A "
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inequality:if JAI = (AA*) is a matrix valued absolute value for matrix

A, then Thompson's result is the

IA+BI ; U IAIU* + V IB V*

for suitable unitary matrices dependent on A and B. Following Thompson's

suggestion, his functional analysis colleague, C.A. Akemann, has proved

an infinite dimensional version valid for Hilbert space operators.

Work is under way on the corresponding p-adic (paper 5) and quaternon

results.

Paper 10 is really a contribution to harmonic analysis: it general-

izes, and points the way to many further generalizations, of certain

matrix theory embedding theorems that have been found useful in harmonic

analysis.

Paper 12 reproves by "interlacing inequalities" certain results

proved by others using Lie methods. As such, it represents a continuing

attempt by Thompson to fit his investigations into a Lie-theoretic

framework.

Research is vigorously continuing.



-
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R. C. Thompson

PUBLICATIONS

October 1, 1979 - September 30, 1980

The following delineates the status of papers published or in preparation.

(a) Published papers. All of these represent work completed prior to
October 1979, but published since October 1979.

I. Invariant factors under rank one perturbations, Canadian Journal
of Math., V. 32 (1980), pp. 240-245.

2. The congruence numerical range, Linear and Multilinear Algebra,
V. 8 (1980), pp. 197-206.

3. Invariant factors of complementary minors of integral matrices,
Houston Journal of Math., V. 5 (1979), pp. 421-425.

4. The Smith invariants of a matrix sum, Proc. Am. Math. Soc., V. 78
(1980), pp. 162-164.

(b) Papers in preparation. Some of these are manuscripts substantially
completed prior to October 1979, but not submitted to journals.
All will eventually be published, although several will likely
incorporate updating in view of the probable outcome of current
(Oct. '80) research.

5. p-adic matrix valued inequalities, in preparation, 12 typed pages.

6. A matrix exponential formula, in preparation, 10 typed pages.

7. The Smith form, the inversion rule for 2 X 2 matrices, and the
uniqueness of the invariant factors for finitely generated
modules, in preparation, 5 typed pages.

8. The Jacobi-Gundelfinger-Frobenius-Iohvidov rule and the Hasse
symbol, in preparation, 6 typed pages.

9. A matrix block diagonalization in the presence of a semi-
definiteness hypothesis, in preparation, 10 typed pages.

10. Doubly stochastic, unitary, unimodular, and complex orthogonal
power embeddings, in preparation, 20 typed pages.

11. Left multiples and right divisors of integral matrices, in
preparation, 12 typed pages.
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12. Products of simple involutions, in preparation, 15 typed pages.

13. An exponential formula, in preparation, 15 typed pages.

14. A supplement to the Canipbell-Baker-llausdorff-Dynkin formula,
in preparation, 3 typed pages.

15. The invariant factors of a matrix sum II, still being researched.
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ABSTRACT

Henryk Minc: INVERSE ELEMENTARY DIVISOR PROBLEMS FOR NONNEGATIVE

MATRICES.

BOUNDS FOR PERMANENTS.

Research during the period included:

(1) Study of the problem: does there exist a doubly stochastic matrix with

the same spectrum as a given stochastic matrix but with arbitrarily

prescribed elementary divisors consistent with the spectrum. The

question was answered in the negative in general, and in the affirmative

in case the given matrix is positive and diagonalizable, and also in

case the prescribed spectrum consists of only two distinct eigenvalues.

(2) The same question as in (I) for general nonnegative matrices was

answered in the affirmative in case the given matrix is positive and

diagonalizable.

(3) Bounds for permanents were obtained. In order to improve the known

bounds for the 3-dimensional dimer problem, a large number of

permanents of (0, 1) - circulants has been computed.

44
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Henryk Minc: (I) INVERSE ELEMENTARY DIVISOR PROBLEMS FOR

NONNEGATIVE MATRICES

(1) One of the most important unsolved problems in linear algebra is

the inverse eigenvalue problem for nonnegative matrices: to find

necessary aid sufficient conditions that a given n-tuple of complex

numbers be the spectrum of a nonnegative matrix. A parallel problem

for doubly stochastic matrices is unsolved as well. The inverse

elementary divisor problem for doubly stochastic matrices, the deter-

mination of necessary and sufficient conditions that given polynomials

be the elementary divisors of a doubly stochastic matrix, contains the

inverse eigenvalue problem, and obviously it is also unsolved.

In [4] I showed that doubly stochastic n X n matrices exist with
ei

elementary divisors X - 1 and (% - 0) , i = 2,... ,m, for any real a,
11n-I < < 1, and any positive integers e2 ,... ,em whose sum is n-l.

This result implies that for any n 2 3 there exist doubly stochastic

n x n matrices which have no roots. In [4] I also considered the

inverse elementary divisor problem for doubly stochastic matrices

modulo the inverse eigenvalue problem: given a doubly stochastic matrix,

does there exist a doubly stochastic matrix with the same spectrum

and arbitrarily prescribed elementary divisors consistent with the
k

spectrum that do not include ( - I) with k > I (otherwise the answer

would clearly be in the negative). The question is answered in [4] in

the negative in general, and in the affirmative in case the given

matrix is positive, diagonalizable, and with real eigenvalues.

(2) In [5] I showed that given any positive diagonalisable matrix,

there exists a positive matrix with the same spectrum and with any

• i-
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prescribed elementary divisors consistent with the spectrum. A parallel

result for doubly stochastic matrices was also proved, thus extending

the result in [4] to diagonalizable positive doubly stochastic matrices

with complex, not necessarily real, eigenvalues.

II BOUNDS FOR PERMANENTS

(3) In [2] I obtained bounds for permanents of real matrices. In [1]

I utilized Friedland's lower bound for the permanents of doubly

stochastic matrices to obtain an improved lower bound for the d-dimensional

dimer problem for d 4. In fact I showed that

Xd log (2d) -

For the all important 3-dimensional case it is known that

0.418347 ! X < 0.548271,

where the lower bound is due to Hemmersley and the upper bound is mine.

In order to improve these bounds it is necezssary to obtain sharper

bounds than the currently known bounds for the permanents of (0,1)-

circulants with 6 ones in each row. For this purpose, permanents of

some 850 (0,1)-circulants were computed, of orders up to 18 X 18,

with 3, 4 or 6 ones in each row. No definite results have been obtained

so far.
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Henryk Minc

Publications - October 1, 1979 to date

1. H. Minc, An asymptotic solution of the multidimensional dimer
problem, Linear and Multilinear Algebra 8 (1980), 235-239.

2. H. Mint, Bounds for permanents and determinants, Linear and
Multilinear Algebra 9 (1980), 5-16.

3. H. Minc, Rearrangement inequalities, Proc. Roy. Soc. Edinburgh
(to appear).

4. H. Minc, Inverse elementary divisor problem for doubly stochastic
matrices (submitted).

5. H. Minc, Inverse elementary divisor problem for nonnegative

matrices (submitted).




